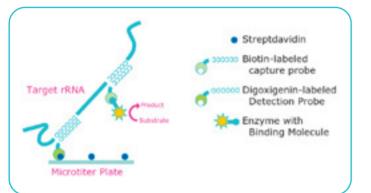
Merck

Validation of shorter protocol for detection of *Salmonella enterica* subsp. Enterica in peanut butter samples followed by a rRNA detection system

Kathleen Merx¹ and Jvo Siegrist²

¹ BECIT GmbH, Edisonstr. 5, 06766 Wolfen, Germany ² Sigma-Aldrich Chemie GmbH, Industriestr. 25, 9470 Buchs Switzerland

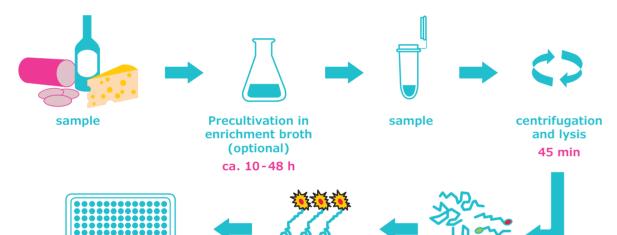
Abstract


Food-borne pathogens Salmonella is commonly evaluated in manufacturing of peanut butter and other food products. For the HybriScan®D Salmonella Test (Cat. No. 55662) the ISO based enrichment method is recommended. That means sample pre-enrichment for 18 hours at 37 °C in buffered peptone water (BPW) followed by a selective enrichment step in Rappaport-Vassiliadis (RV) Broth for 24 hours at 41 °C. HybriScan®D Salmonella is a rRNA sandwich hybridisation detection system which needs at least 500 cfu/mL for the assay. This rapid molecular test system is desirable for the detection of Salmonella species like S. Enteritidis, S. Typhimurium, S. Typhi and S. Paratyphi. Results of this study on a rapid test kit demonstrate that Salmonella enterica subsp. enterica (ATTC[®] 13311[™]) can be detected and identified in a shorter time even in a difficult sample matrix like peanut butter.

Introduction

Peanut butter consist of about 20% carbohydrates, 25% proteins and 50% fat, Salmonella cells are just a very small component of the overall sample material and may be attached within the food matrix as single cells or clumps of cells. Normally before rapid detection methods can be used successfully, it is usually necessary to separate the target cells from the food matrix and from the background microflora. But even the HybriScan is as well a rapid molecular biological system it is practically insensitive to the sample matrix.

HybriScan®D Salmonella test is based on the detection of target molecules from the microorganisms of interest by means of specific capture and detection probes in a so-called sandwich hybridization. The hybridization reaction of the target molecules with the Biotin-labeled capture and a DIG-labeled detection probe takes place in a streptavidin coated microtiter plate (**Figure 1**).


Figure 1: Sandwich Hybridization between Target rRNA Capture and Detection Probe.

After coupling of the target molecule to the microtiter plate, an enzyme is attached in a subsequent incubation step. After several washing steps, reaction with a color substrate gives blue coloration that changes into yellow color after the addition of a stop solution. The vellow color enables highly sensitive photometric measurement at 450 nm (Figure 2). Comparison is made with the standard solutions contained in the test kit.

10 min

Figure 2: Work flow – HybriScan®D Salmonella.

Of the 107 inoculated with Salmonella enterica peanut butter samples, 106 were identified as clearly contaminated with Salmonella by the use of HybriScan[®]D Salmonella assay. The result of 1 sample was considered questionable. All negative controls gave negative results in the HybriScan®D Salmonella assay. See **Table 1– 4**.

		•	C					C	0
ode Jate	Probe	Average O.D. 450 nm	Sample O.D.%	Cells/ 10 µL	Code Date	Probe	Average O.D. 450 nm	Sample O.D.%	Ce 1(
Juic	S1	0.046	0.0.70	0	Bate	S1	0.058	0.0.70	1
	S2	0.149		10.0		S2	0.154		1
	S3	0.377		30.0		S3	0.356		3
	S4	1.017		90.0		S4	0.982		9
624251	1-1 N.C.	0.046	0.0	5010	93294252			-2.8	
	1-2	4.060	874.2			6-2	3.727	886.2	
	1-3	3.955	851.4			6-3	3.994	950.8	
	1-4	3.970	854.6			6-4	3.659	869.8	
	1-5	3.899	839.2			6-5	3.512	834.4	
	1-6	3.891	837.4			6-6	3.430	814.5	
	1-7	3.535	760.0			6-7	3.588	852.8	
	1-8	3.791	815.8			6-8	1.738	405.9	
	1-9	3.736	803.7			6-9	4.067	968.5	
	1-10	3.816	821.1			6-10	3.727	886.2	
1874251	2-1 N.C.	0.048	0.3		01304252	7-1 N.C.	0.046	-2.9	
	2-2	3.748	806.4			7-2	3.787	900.7	
	2-3	3.726	801.6			7-3	3.575	849.5	
	2-4	4.072	877.0			7-4	3.779	898.8	
	2-5	3.907	840.9			7-5	3.875	922.0	
	2-6	3.965	853.5			7-6	4.144	987.1	
	2-7	3.824	822.8			7-7	4.067	968.5	
	2-8	4.060	874.2			7-8	3.988	949.4	
	2-9	4.003	861.9			7-9	4.135	984.9	
	2-10	4.032	868.2			7-10	4.101	976.7	
					01304252	8-1 N.C.	0.053	-1.2	
						8-2	3.507	833.2	
able 2						8-3	3.906	929.4	
			a 1	0 11 (8-4	3.708	881.7	
Code Date	Probe	Average O.D. 450 nm	Sample O.D.%	Cells/ 10 µL		8-5	3.672	873.1	
Jale	S1	0.051	0.0.%	0		8-6	4.059	966.4	
	S1 S2	0.169		10.0		8-7	3.914	931.5	
	S3	0.409		30.0		8-8	4.101	976.7	
	53 54	1.171		90.0		8-9	3.750	891.8	
01574051			1 2	90.0		8-10	3.852	916.5	
01574251	3-1 N.C.	0.057	1.2						
	3-2	0.608	112.1		Table 4				
	3-3	1.665	324.6				A	Commission	0
	3-4	0.289	47.9		Code Date	Probe	Average O.D. 450 nm	Sample O.D.%	Ce 10
	3-5	0.120	13.9		Date	S1	0.047	0.0.70	10
	3-6	1.146	220.2			S1 S2	0.131		10
	3-7	0.701	130.8			52 S3	0.339		30
	3-8	0.251	40.2		00004252	33	0.559	2.4	50

3-9

0133425

0086425

S1= St

S2=Sta

S3=Sta

S4 = St

N.C.= inocula 0.981

187.0

20 min

Experimental

10 min

The matrix to be examined was Peanut Butter (9 different brand codes with 12 different code dates). The pre-enrichment time described in the protocol of the HybriScan[®]D Salmonella test takes 42 hours. In this experiment one target was to reduce the enrichment time to 24 hours in total. The cultivation time of the pre-enrichment peptone water culture took 18 hours; the incubation time of the selective enrichment culture in Rappaport-Vassiliades Enrichment Broth was shortened to 6 hours. Per peanut butter batch, one sample wasn't inoculated and carried as a negative control (N.C.), 9 to 10 samples were inoculated with Salmonella enterica subsp. Enterica (ATTC[®] 13311^M). Each Peanut Butter sample was treated as follows:

- 25 g of Peanut Butter (except the negative controls) were inoculated with 1 to 5 cells of Salmonella enterica ٠ subsp. Enterica.
- 225 mL buffered peptone water were added to each sample, the mixture was homogenised for 1 minute in a Stomacher and the sample were incubated for 18 hours at 37 °C.
- After 18 hours of incubation 0.1 mL of the pre-enrichment peptone water culture were transferred to 10 mL Rappaport-Vassiliades Enrichment Broth. The selective main enrichment was conducted for 6 hours at 41°C.

Cell lysis and the HybriScan®D Salmonella assay were completed as described in the HybriScan®D Salmonella test protocol. In addition, each negative control and inoculated sample were tested for Salmonella according to EN ISO 6579:2002.

Results

Evaluation of the samples was performed using the following formula as described in the HybriScan®D Salmonella assay:

Sample 0.D.% = $(0.D_{\text{sample}} - 0.D_{\text{N.C.}}) / (0.D_{\text{P.C.}} - 0.D_{\text{N.C.}}) \times 72.1\%$

P.C. positive control (S3)

N.C. negative control (S1)

Samples with O.D.% values under 10 are considered negative. Samples with O.D.% values from 10 to <20 are considered questionable. Samples with O.D.% values ≥ 20 are considered positive.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates All Rights Reserved. Merck, the vibrant M, and Millipore are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources. MK_PS7653EN 35347 03/2021

The life science business of Merck operates

	5-5	0.901	107.0	005		2	0.000	0.1
	3-10	0.359	62.0			9-2	2.749	668.2
52	4-1 N.C.	0.051	0.0			9-3	0.267	54.4
	4-2	3.737	741.4			9-4	1.231	292.9
	4-3	3.682	730.3			9-5	0.166	29.3
	4-4	3.927	779.6			9-6	1.516	363.3
	4-5	3.700	733.9			9-7	2.969	722.7
	4-6	3.780	750.1			9-8	1.921	463.5
	4-7	3.813	756.6			9-9	3.646	890.1
	4-8	3.915	777.1	008	94252	10-1 N.C.	0.050	0.7
	4-9	3.682	730.4			10-2	1.372	327.7
	4-10	4.091	812.6			10-3	3.943	963.6
52		0.053	0.4			10-4	4.063	993.3
	5-2	0.232	36.4			10-5	3.913	956.2
	5-3	0.267	43.4			10-6	3.543	864.7
	5-4	0.740	138.7			10-7	3.803	929.0
	5-5	0.880	166.7			10-8	3.869	945.3
	5-6	0.736	137.8			10-9	4.112	1005.4
	5-7	0.561	102.7			10-10	3.615	882.4
	5-8	1.967	385.3	019	04252	11-1 N.C.	0.049	0.5
	5-9	2.093	410.7			11-2	3.537	863.1
	5-10	3.585	710.7			11-3	3.874	946.6
						11-4	3.988	974.8
						11-5	3.979	972.4
		- 11 (1.0 1				11-6	4.049	989.7
ota	andard1 0 c	elis/10 µL				11-7	3.881	948.2
а	ndard2 10.0)00 cells/µL				11-8	3.421	834.5
						11-9	3.984	973.7
aı	ndard3 30.0	000 cells/10µ	L			11-10	3.635	887.3
+-	ndard4 00	000 colle(10)	d.	007	04252	12-1 N.C.	0.051	0.9
ιd	nuaru4 90.0	000 cells/10				12-2	2.225	538.6
Ν	egative con	trol: sample	was not			12-3	3.100	755.0
		monella spp.				12-4	2.251	545.0
						12-5	0.434	95.7
						12-6	1.037	244.7
						12-7	0.340	72.5
						12-8	0.555	125.5
						12-9	0.293	60.7

00984252 9-1 N.C

0.060

3.1

Preparation, Separation, Filtration & Monitoring Products