Merck
CN
HomeApplicationsMaterials Science and Engineering Microelectronics & Nanoelectronics

Microelectronics & Nanoelectronics

Illustration of printed circuit board made of electronic components at the micrometer and nanometer scale.

Microelectronics and nanoelectronics are subfields of electronics in which the nominal feature sizes of electronic components are between 100 and 0.1 micrometers in magnitude (microelectronics) or 100 nanometers or smaller (nanoelectronics). The memory storage power of today’s advanced electronic devices has been achieved by significantly increasing the density of microchips. By decreasing the size of field-effect transistors, more components can be fit into integrated circuits, allowing for more powerful and energy-efficient electronic devices with reduced weights and power consumption.

According to Moore’s Law, the number of transistors that can be put on a single chip will double every two years. Since this was projected in 1965, semiconductor fabrication technology sustained this rate of advancement and revolutionized the industry. However, pace of dimension reduction is slowing, and the key challenge in fabricating electronic components in the sub-micrometer range is the design of the transistor gate, which controls the current flow in the channel. The smaller electronic components are, the more challenging they become to manufacture. Physical and quantum effects alter materials’ properties from a macroscale to a nanoscale, influencing inter-atomic interactions and quantum mechanical properties.

The arrival of innovative materials, carbon nanotubes, boron nitride nanotubes, quantum dots, and graphene additives, have advanced the minimization of nanotechnology and microtechnology. These and other new materials can be shaped and manipulated with extraordinary precision at the tiniest of scales. Novel technologies enable the deposition and layering of electronic materials with precise thickness, even down to the atomic level. Thin-film semiconductor device fabrication technology uses conducting, semiconducting, and insulating materials to deliver advanced capabilities at high volumes and very low cost. Modern manufacturing methods for nanoelectronics include patterning (lithography), etching, thin film deposition, and doping techniques.

Emerging research fields focus on new approaches in nanotechnology and quantum mechanical effects. Molecular electronics uses single molecules as electronic components to establish electrical contact with bulk-sized electrodes. Spintronics, or spin-transport electronics, manipulates electrons’ spin property with magnetic and electric fields, resulting in a spin-polarized current that provides higher data transfer speeds and greater storage capacity, memory density and processing power than is possible with electric charge alone.


Related Technical Articles

  • Graphene has emerged as the new wonder material. Being only one atom thick and composed of carbon atoms arranged in a hexagonal honeycomb lattice structure, the interest in this material has exploded exponentially since 2004 when it was first isolated and identified using a very simple method.
  • Find unique properties & applications of single (SWNTs) , double (DWNTs) & multi walled carbon nanotubes (MWCNTs).
  • Graphene oxide is a unique material that can be viewed as a single monomolecular layer of graphite with various oxygen containing functionalities such as epoxide, carbonyl, carboxyl and hydroxyl groups.
  • Boron nitride nanotubes (BNNT) are close structural analogs of carbon nanotubes (CNT), which are high aspect ratio nanotubular material, where carbon atoms are alternately substituted by nitrogen and boron atoms.
  • Thermoelectric materials comprise a wide range of solid compounds distinguished by their ability to convert thermal and electrical energy.
  • See all (68)

Related Protocols




Sign In To Continue

To continue reading please sign in or create an account.

Don't Have An Account?