Merck
CN

544884

Sigma-Aldrich

氧化铁(III)

nanopowder, <50 nm particle size (BET)

登录查看公司和协议定价

别名:
三氧化二铁
经验公式(希尔记法):
Fe2O3
CAS号:
分子量:
159.69
EC 号:
MDL编号:
PubChem化学物质编号:
NACRES:
NA.23

描述

crystalline (primarily γ)

形式

nanopowder

表面积

50-245 m2/g

粒径

<50 nm (BET)

应用

battery manufacturing

SMILES字符串

O=[Fe]O[Fe]=O

InChI

1S/2Fe.3O

InChI key

JEIPFZHSYJVQDO-UHFFFAOYSA-N

正在寻找类似产品? Visit 产品对比指南

一般描述

三氧化二铁纳米粉末是一种粒径小于50nm的超细粉末。它是一种由铁和氧组成的红色或黑色固体化合物。也称为赤铁矿或氧化铁。它是一种天然存在的矿物质,也可以在实验室中合成。 三氧化二铁具有许多有用的物理特性。它具有高折射率和不透明性,可作用油漆和墨水中的颜料。三氧化二铁在室温下还具有催化活性和弱铁磁性。

应用

三氧化二铁纳米粉末因其磁性和催化性能而具有广泛用途。它可用于生产磁带和磁盘等磁记录介质。它还可用作化学品生产的催化剂,包括生产汽油和塑料以及用于环境修复等。

特点和优势

  • 高理论比容量
  • 生物相容性
  • 易于包被和修饰
  • 无毒性

储存分类代码

13 - Non Combustible Solids

WGK

nwg

闪点(°F)

Not applicable

闪点(°C)

Not applicable

个人防护装备

dust mask type N95 (US), Eyeshields, Gloves


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

为方便起见,与您过往购买产品相关的文件已保存在文档库中。

访问文档库

难以找到您所需的产品或批次号码?

在网站页面上,产品编号会附带包装尺寸/数量一起显示(例如:T1503-25G)。请确保 在“产品编号”字段中仅输入产品编号 (示例: T1503).

示例

T1503
货号
-
25G
包装规格/数量

其它示例:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

输入内容 1.000309185)

遇到问题?欢迎随时联系我们技术服务 寻求帮助

批号可以在产品标签上"批“ (Lot或Batch)字后面找到。

Aldrich 产品

  • 如果您查询到的批号为 TO09019TO 等,请输入去除前两位字母的批号:09019TO。

  • 如果您查询到的批号含有填充代码(例如05427ES-021),请输入去除填充代码-021的批号:05427ES。

  • 如果您查询到的批号含有填充代码(例如 STBB0728K9),请输入去除填充代码K9的批号:STBB0728。

未找到您寻找的产品?

部分情况下,可能未在线提供COA。如果搜索不到COA,可在线索取。

索取COA

  1. Which document(s) contains shelf-life or expiration date information for a given product?

    If available for a given product, the recommended re-test date or the expiration date can be found on the Certificate of Analysis.

  2. How do I get lot-specific information or a Certificate of Analysis?

    The lot specific COA document can be found by entering the lot number above under the "Documents" section.

  3. How do I find price and availability?

    There are several ways to find pricing and availability for our products. Once you log onto our website, you will find the price and availability displayed on the product detail page. You can contact any of our Customer Sales and Service offices to receive a quote.  USA customers:  1-800-325-3010 or view local office numbers.

  4. What form of iron (III) oxide is Product 544884?

    Both the alpha-form and gamma-form are present in the mineral form naturally. This nanopowder is expected to be comprised of primarily the gamma-form, also known as maghemite.

  5. What is the purity of Iron(III) oxide, Product 544884?

    The purity of this product is not specifically stated on the certificate of analysis. However, an estimated purity can be determined based on the iron content. One mole of iron (III) oxide contains 2 moles (or 111.694g) of iron. The theoretical amount of iron present is approximately 69.94%. Purity can only be measured for a particular lot, which can be calculated based on the iron content determined for that lot. The ratio of the experimental content and the theoretical content, expressed as a percentage will be the purity of the particular lot. For example, an experimental result of 68.6% iron corresponds to a purity of 98.1%.

  6. What is the Department of Transportation shipping information for this product?

    Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product. 

  7. My question is not addressed here, how can I contact Technical Service for assistance?

    Ask a Scientist here.

Yangyang Yang et al.
Ecotoxicology and environmental safety, 148, 89-96 (2017-10-17)
The behaviors of nanoparticles rely on the aqueous condition such as natural organic matter (NOM). Therefore the presence of NOM would influence the interaction of nanoparticles with other substances possibly. Here, microcystin-LR (MC-LR) adsorption on iron oxide nanoparticles (IONPs) was
Hokuto Fuse et al.
Nanomaterials (Basel, Switzerland), 9(2) (2019-02-06)
Submicrometre spherical particles made of Au and Fe can be fabricated by pulsed-laser melting in liquid (PLML) using a mixture of Au and iron oxide nanoparticles as the raw particles dispersed in ethanol, although the detailed formation mechanism has not
Daniel Matatagui et al.
Sensors (Basel, Switzerland), 19(24) (2019-12-11)
A portable electronic nose based on surface acoustic wave (SAW) sensors is proposed in this work to detect toxic chemicals, which have a great potential to threaten the surrounding natural environment or adversely affect the health of people. We want
Junho Han et al.
Scientific reports, 9(1), 6130-6130 (2019-04-18)
Recent developments in analytics using infrared spectroscopy have enabled us to identify the adsorption mechanism at interfaces, but such methods are applicable only for simple systems. In this study, the preferential adsorption of phosphate on binary goethite and maghaemite was
Andrew Pratt et al.
Nature materials, 13(1), 26-30 (2013-11-05)
Geometry and confinement effects at the nanoscale can result in substantial modifications to a material's properties with significant consequences in terms of chemical reactivity, biocompatibility and toxicity. Although benefiting applications across a diverse array of environmental and technological settings, the

商品

Innovation in dental restorative materials is driven by the need for biocompatible and natural-appearing restoration alternatives. Conventional dental materials like amalgam and composite resins have inherent disadvantages.

Innovation in dental restorative materials is driven by the need for biocompatible and natural-appearing restoration alternatives. Conventional dental materials like amalgam and composite resins have inherent disadvantages.

Magnetic nanoparticles have attracted tremendous attention due to their novel properties and their potential applications in magnetic recording, magnetic energy storage and biomedicine.

Magnetic nanoparticles have attracted tremendous attention due to their novel properties and their potential applications in magnetic recording, magnetic energy storage and biomedicine.

查看所有结果

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门